
EX
A

M
PL

EValidation of Standard Interfaces for Machine Control*

F.M. Proctor, J. Michaloski,
W. Shackleford, and S. Szabo

National Institute of Standards and Technology
Gaithersburg, MD 20899

* No approval or endorsement of any commercial product by the National Institute of Standards and Technology is intended or
implied. Certain commercial equipment, instruments, or materials are identified in this report in order to facilitate understanding.
Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor
does it imply that the materials or equipment identified are necessarily the best available for the purpose.
This publication was prepared by United States Government employees as part of their official duties and is, therefore, a work of
the U.S. Government and not subject to copyright.

ABSTRACT

Open architecture controllers offer a multitude of benefits to users
of machine tools, robots, and coordinate measuring machines,
ultimately reducing the life-cycle costs of installing, operating,
and maintaining manufacturing equipment. Aside from those
benefits resulting from basing a controller on common operating
systems and computing platforms, the main feature of an open
architecture is the public availability of interfaces to controller
functionality. These interfaces allow third parties who are not
associated with the original equipment manufacturers to provide
enhancements to the functionality of the machine. Efforts to
standardize the interfaces to open architecture machine tool
controllers are underway both in the United States. and abroad. In
the United States, the Department of Energy and the National
Institute of Standards and Technology have cooperatively
undertaken this standards effort. One of the most important
aspects of this program is the validation of interfaces on actual
machinery in production applications. The goal of this validation
process is to ensure that the interface specification is broad
enough to encompass a significant portion of manufacturing
applications, while still being practical to implement. This paper
explores the problems resulting from defining interfaces to
general controller functionality, when faced with the realities of
validating the interfaces on controllers with specific operating
systems, computing platforms, and control components.

KEYWORDS: open architecture controller, motion
control, standards

1. INTRODUCTION

In the early 1990s, the Manufacturing Engineering Laboratory
of the National Institute of Standards and Technology (NIST)
began the Enhanced Machine Controller (EMC) program to
develop a modular definition of components for machine
control [1].

The intent was to document the interfaces to these modules to
the degree that would allow independent third parties to provide
interoperable products. The development of this modular
architecture grew out of NIST’s experience developing
controllers based on the Real-time Control System (RCS)
architecture which has evolved within NIST over many years
[2]. NIST and the Department of Energy national laboratories
have combined their efforts in this area under the auspices of
the Technologies Enabling Agile Manufacturing (TEAM)
program, and are undertaking a formal review of the interface
specification that has resulted from recent implementations of
interface-based controllers [3]. This review also includes
researchers from General Motors and the University of
Michigan. A broader review is anticipated within the EMC
Consortium, established by NIST in January 1996 to
formalize a three-year review of controller implementations
based on these interfaces.

2. INTERFACE DESCRIPTION

The development of the EMC architecture, shown in Figure 1,
was the first step toward defining an interface specification. In
this figure, boxes indicate the individual modules for which
interfaces have been defined and validated. These include Task
Sequencing, Trajectory Generation, Servo Control, and
Discrete Input/Output. The Operator Interface, shown at the
side, does not require any specific interfaces itself, but can be
developed using only the interfaces provided by the other
modules. Implementations of the operator interface need only
avail themselves of messages to the controller and data
provided by the controller: no additional interfaces are required
to be defined in order to incorporate an operator interface into
an EMC controller.

EX
A

M
PL

E

Servo
Control

Trajectory
Generation

Task
Sequencing

Discrete
Input/Output

Encoders
Valves and
solenoids

Motors

Limit switches

Servo
Control

Tach

Operator
Interface

Factory
Network

Figure 1 . The EMC Architecture. Interfaces for
Task Sequencing, Trajectory Generation, and Servo
Control were targeted during the validation process.

The interface specifications are formalized in the C++
programming language, using header files. The specification
consists of messages into each module, and world model data
provided by each module. Both the messages and world model
data are implemented using C++ classes.
Class definitions alone are not sufficient to describe the
interfaces. The specification needed to include the expected
behavior of the control modules in response to each control
message, and their effect on the world model of each control
module. This information is provided in manual-style pages
accompanying the C++ class definitions, using Hypertext
Markup Language (HTML) format.
Supplementing the message specification is a model of data
transfer, the Neutral Manufacturing Language (NML) [4]. This
model provides for “mailboxes” of data, with one or more
readers and writers. Each module is modeled as a cyclic
process, which reads its input command from its supervisor,
reads the status of its subordinates (or sensors), and computes
and sends outputs to its subordinates (or actuators).
The interface specification is divided into two parts: commands
that each module will perform, and status that each module
will maintain. Both commands and status are derived from the
NML message base class, and require a unique identifier and
zero or more data fields representing the parameters to the
command or fields in the status. During the development of
the specification, the intent was to analyze the general
requirements of each module in terms of which commands it
should be responsible for carrying out, and what world model
status it should be responsible for maintaining. Ideally, the

specification would be complete enough to never require
modifications. In the case of the Servo Control module, a
literature survey conducted over a period of years resulted in a
cataloguing of 62 algorithms, and a generalization of an
interface to this module that would support implementation of
the servo control function with any of these algorithms.
However, no matter how comprehensive such a survey, new
algorithms will inevitably arise which require input data or
provide output data that are not available in the interface.
Because of this, extensions to the interfaces are anticipated.
Indeed, the need for extensions was evidenced during several of
the validation tests discussed in subsequent sections of this
paper.

3. SUPPORT INFRASTRUCTURE

A central problem faced when developing the interfaces was
eliminating suppositions for computing platforms, operating
systems, and programming languages. Already one can see that
the C++ form of the interfaces presumes a programming
language. Vendors of modules (toward whom these interfaces
are aimed) need to provide the command initiation functions
and world model access functions for the platforms the vendors
have selected. This does not prevent developers from using
another language for the implementation (e.g., the graphical
user interface was coded in Microsoft Visual Basic in this
case), but it does require that the external interfaces be C++-
linkable.
The picture is complicated when considering how one
assembles a system with components that provide these
interfaces. For example, as seen in Figure 1, the Trajectory
Generator module supervises the Servo Control module,
typically generating points in a world coordinate system and
sending them to the Servo Control subordinate. However, the
Trajectory Generator cannot, in general, call functions provided
by the Servo Controller, since the Trajectory Generator may be
running on a different computer than the Servo Controller.
This problem is one aspect of the more general configuration
problem, which leads to the question, “What services can be
expected in an open architecture controller that allow
components to interoperate?” Aside from a vendor’s need to
access memory, disk files, timers, and other operating system
resources, there is more required from the support infrastructure
as the example above illustrates.
Because we needed to implement controllers for various
machines to embark on the validation effort, we required some
particular support infrastructure. We used the NIST RCS
Library, which has been ported to a variety of computing
platforms, and directly supports the RCS methodology for
implementing real-time control systems by providing a
uniform programming interface to communication, timing,
shared memory, and mutual exclusion primitives. However, by
selecting this library, we sidestepped an important problem:
which support infrastructure should be presumed (and indeed
accompany) the interface specification? Architectures exist

EX
A

M
PL

Ewhich can serve the purpose, such as the Common Object
Request Broker Architecture (CORBA) from the Object
Management Group, but requiring a particular infrastructure
greatly constrains the potential spectrum of applications.
Resolving this problem was outside the scope of this effort.

3.1. Validation Tests

The interface validation tests were conducted in testbeds at
NIST in Gaithersburg, Maryland and at the General Motors
Powertrain facility in Pontiac, Michigan. At NIST, the testbed
consisted of a UNIX workstation simulation for initial
development, and a two-computer controller for run-time tests
on a desktop milling machine (minimill). The graphical user
interface ran on Microsoft Windows on the first computer, and
the real-time controller ran on a UNIX operating system on the
second computer. Communication between the two took place
via ethernet.
This is not a full paper. This is only an example of how to
produce your camera ready paper for the ISAS 97 conference.

4. REFERENCES

[1] Proctor, F. M., and Michaloski, J., “Enhanced Machine
Controller Architecture Overview,” NIST Internal Report
5331, December 1993.

[2] Albus, J. S., “Outline for a Theory of Intelligence,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 21, No.
3, May/June 1991.

[3] Shackleford, W., and Proctor, F. M., “The Real-time
Control System Library, Internet Location:
http://isd.cme.nist.gov/ ~shackle/rcslib/

[4] Object Management Group, “What is CORBA?,” Internet
Location: http://ruby. omg.org/corba.htm

